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1 Introduction

One of the problems of interest to biologists is to determine patterns in genetic sequences that have no current
explanation [Ber]. In fact experimental observation pertaining to the presence of excess oligonucleotides of some
type over the expected number for random sequences can be taken as evidence for this functional significance
[Sol] and hence reveal dependencies between bases that form the skeleton of any nucleic acid. Knowledge of
these dependencies may be extremely useful while constructing probabilistic bounds for occurrence of a family
of motifs in a gene sequence [SL]. In this paper, we employ a variant of the chaos game representation algorithm
first coined by Barnsley [Bar] to graphically represent a typical random gene sequence. Analysis of this fractal
representation enables us to answer questions like: (1) What is the probability of occurrence of a motif with a par-
ticular type of trailing subsequence, in a random sequence of fixed length ? (2) What is the conditional probability
of finding a particular base given the occurrence of a certain subsequence ? In this paper, we also propose a new
fractal characterization of another object of interest to probabilists , labelled ¥,,, which denotes the number of
times a rare motif may occur in a random sequence of given length, n. In spirit, this is equivalent to what is known
as the occupancy problem in Markov process where mathematicians are concerned about the type of distribution
of ¥, [Erh]. For biologists, a mathematical characterization of ¥,, provides information about chances of random
occurrence of mutants.

The rest of the paper is organized as follows. Section(2) introduces the chaos game algorithm and the variant
employed for representing genetic sequence. In section(2.1) we provide some experimental results (plots) of this
algorithm when applied to real gene sequences. In section (2.2), we propose how information may be extracted
from these pictorial representations and quantified in terms of probability of occurrences of a certain class of events
(subsequences). In section (3.1), we state some relevant definitions and theorems which we use to characterize
W, in section (3.2). Finally, in section (4) we conclude with a brief summary and scope for future work.

2 The chaos game (CG) algorithm

In figure(1) we see the structure of a typical double stranded DNA. In most traditional approaches, like the one
in [Ken], the occurrence of the nucleotide bases is assumed to be independent, i.e. Pr(X; = g|X;—1 = ¢) =
Pr(X; = g) = p, and so on. Here, X; denotes a random variable at the i*" instant of the random sequence of
length, n; X; may be either one of a, ¢, g or t. However, this assumption about independence is far from the truth,
as we will see shortly.

The chaos game is an algorithm which enables one to produce fractal structures in an iterative manner. For-
mally, it belongs to the more general class of linear iterative function system. The basic steps of the algorithm are
as follows [Jef]:

e Locate three initial points in a plane such that they are not collinear.

e Label one of the vertices with the numerals 1 and 2, the second vertex with the numerals 3 and 4, and the
third vertex with the numerals 5 and 6.

e Pick a random initial starting point in the plane.
e Roll a six-sided die, the number rolled on the die picks out the corresponding vertex of the triangle.
e Place a mark halfway between the current point and the indicated vertex.

e Continue the above procedure.
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G AG TCT GGCA ACTGT TG AT A

Nucleotide Backbone

Figure 1: A typical double stranded DNA sequence.

The algorithm produces the well known Sierpinski triangle with 3 initial points; however with 5,6 or 7 initial
points, the chaos game code produces a pentagon within a pentagon, a hexagon within a hexagon, a heptagon
within a heptagon respectively. The case with 4 initial points is quite different though. In fact with 4 initial points,
the space (square) gets filled up uniformly and randomly with dots. Thus we see that the patterns produced depend
heavily on the initial number of vertices, hence the name chaos game.

It may be important to note that the picture produced by the chaos game is known as the attractor. A more
formal treatment of the chaos game in terms of iterated function systems may be found in [Edg] but has been
omitted from discussion in this paper.

In this paper, we employ the chaos game algorithm with some modification to reveal certain patterns in genetic
sequences. We refer to figure(2). We start by assigning the tags corresponding to each of the bases in a DNA
sequence (i.e. a,c, g and t) to the four vertex of a square. We take the center of the square as the starting point
of our algorithm and read the genetic sequence character by character, each time placing a dot half way between
the current point and the vertex corresponding to the character being read out from the sequence and continue the
process until we have read the entire sequence. A few initial instances of this algorithm is shown in figure(2).

sequence read: aceget ......

Figure 2: modified chaos game algorithm
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2.1

CGR on experimental sequences

If the sequence being read were to be truly random with independent occurrence of the nucleotide base, we would
expect absence of any interesting pattern(s). To ascertain our claim, we generated a random sequence comprised
of characters from the alphabet, A = {a,c, g,t} by using Matlab’s pseudo random generator, randi () and
obtained the picture shown in figure(3). Clearly, we see that the space within the square was uniformly and
randomly filled with dots, thereby implying the lack of any inherent dependencies in the occurrence of the bases.

Figure 3: Chaos game representation of a truly random sequence.

Now, we use the gene database from the National Center for Biotechnology Information to test the CGR code
on some real gene sequences. The results are shown in the figures in this section. A few interesting features of

Figure 4: CGR of mitochondrial RNA sequence from Atlantic Hagfish.

the above representation produced by the CG algorithm are noted as below.

neighboring points on the CGR are not close by in the actual sequence.

subsequences ending with a common frailing sequence are mapped to their respective sub-quadrant as
shown in figure(6).

evidence of fractal nature of the plots imply presence of dependence in occurrence of the bases.

figure(6) reveals regions of sparsity, for eg. the cg sub-quadrant; this implies that the likelihood of a g
occurring after an occurrence of c is less likely in comparative terms. Similar arguments may be made for
other subsequences.

The features/patterns observed in the human DNA have also been found in the DNA sequences of vertebrates
and those of certain viruses like HIV.
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Figure 6: CGR of human DNA extracted from clone cell.

2.2 Probabilistic assertions about the occurrence of motifs

While [Jef] did report similar results, he relied on visual characterization of the patterns found in CGRs. In fact
it was noted by [Jef] that a more mathematical and measure theoretic approach would be an extremely useful
direction of future research. In the light of the above statement by [Jef], we make a novel attempt in that direction.
It may be useful to note that the following information may be quantified using the CGR,

no. of dots in the corresponding sub—quadrant
total mo. of dots in the plane

e Pr(occurrence of a subsequence) =

e In a Markov chain model of the genetic sequence, i.e. if {X;};>¢ is a Markov process with finite state space
{a,c,g,t}, the joint distribution of the chain (as an example) is computed as follows [Fu]:

PriX,=¢9,Xn-1=0¢...X1=9,Xo=1t) = Pr(X, =g|Xn_1=1c¢)..Pr(X; =g|Xo =t)Pr(Xo =1t)

Clearly, the terms in the right hand side can be easily derived from the CGR of the sequence, for eg.

no. o dots _in__ the ¢ sub—quadrant : :
Pr(X, =g|Xn1=0¢c)= "= OJ; dots in the o sub_quadrant - 1he above is with respect to a first

order Markov model. For higher order Markov models, it should be clear that the above arguments can be
extended by looking at subsequence lengths of 3 or more and their respective sub-quadrants.

e One interesting aspect of the CGR pointed out earlier is the fact that points close in the sense of the Euclidean
norm in the CGR plane may be far apart in the sequence space. An alternative measure in the CGR space
may be to use the Hausdorff measure. In this regard, it may be useful to point out the strong similarities
between the CGR of the RNA sequence from the Atlantic Hagfish and the Sierpinski gasket; and therefore
we can estimate the Hausdorff dimension of the CGR of the RNA from the Hagfish to be about %ggg =1.58

which is numerically verified by using the box-counting algorithm from problem set 10. [Jia] also provide
tight bounds on the estimates of the Hausdorff measure of such fractal sets.
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3 Fractal characterization of V,,

Recall that ¥,, denotes the number of times a particular type of rare motif may occur in a random sequence
of length, n. The cumulative distribution of ¥,, defined here as Pr(}_, -, oim < ¢) is of immense interest
to probabilists; however the nature of the rare events does not enable one to compute this explicitly and hence
many like [Erh] have proposed approximate distributions with error bounds. Here, we propose a novel fractal
characterization of W,, in terms of a set whose elements are described based on Zm>0 \Il%m) < cin some limiting
sense stated shortly below. Such results have recently been of much interest in the context of random walks.

3.1 Fractal geometry in a probability space, (2, 7, 1)[DT]

Definition: A subset A C € is said to be a fractal with respect to a measure (probability measure) p over € if
p(A) = 0 and dim,(A) = Dim,(A) = constant. Here, dim(.) is the Hausdorff dimension and Dim(.) is the
packing dimension as described in [DT]

Clearly, our knowledge about the Cantor set being a fractal satisfies this definition because the lebesgue mea-

sure, A\(A) = 0 and dim(A) = Dimy(A) = }gg 2. Tt may also be useful to recall the equivalence of the lebesgue

measure over the unit real line and the probability measure over €2 [Qu].

In the same spirit, we state the following theorem.

Theorem [Bill][DT]: For w € Q, let u,(w) = {wo : X;(wp) = X;(w);é = 1,2,...,n} and let A = {w :
Xi(w) = ask = 1,..,n} C Qs.t. u(A) = 0 for some n, then Iv(A) = p(ay,...,an) s.t. v(up(w))
w(up(w)) Vw € Q and ¢ > 0 constant.

Also, for some My C {w : limy, o (2520420 — ¢} if v(Mo) > 0; then My is a fractal and dim,, (M) =
Dim,,(My) = c.

IN

3.2 Characterization of U,

Let Z; denote a finite length querry subsequence (or motif) and Sy be the rarely occurring target motif of the same
length. W, := . [Z; € So] = >_,~, Ii; where I; has success probability p,,. Here, [.] refers to the indicator
function. B B

The strong law of large numbers implies % Zle \pﬁ,,"” — mps, as m — oo, n fixed. Next we define,

A= {w: 25 00(W) - npg}and B, = {w : limy e 25 0T (W) < ¢ € [0,nps,)}-
Clearly, B. C A;Pr(B.) = Pr(A) = 0. Hence, using the theorem above we have a new measure v s.t.
v(B.) > 0,dim,(B;) = f(c) and B, is a fractal.

It must be pointed out here that while the theorem above is only an existence statement of the new measure
v, no general construction of such a measure has been reported in the literature; however some example specific
constructions have been proposed for v by [Bill].

4 Conclusion

In this paper, we have presented a fractal representation of genetic sequence via the modified CGR algorithm
and have thereby shown the inherent dependencies amongst the nucleotide bases. We have made an attempt to
extend the visual features of the CGR to more probabilistic and measure theoretic assertions about the same.
We have also proposed a novel fractal based characterization of W,, which was defined as the number of times
a rare motif may be seen in a random gene sequence. Future work may include extending this characterization
and establishing a stronger mathematical relation between the fractal characterization and the recent works on
approximating probability distribution for ¥,,. A comparative study of the CGR based representation of genes
and other graphical representations of genes may also be very interesting.
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