Synthesis and characterization of Pd and Ni nanoparticles confined in microporous structures for the LENR applications

Vladimir Dubinko, Volodymyr Kotsyubynsky, Pavlo Kolkovskyi, Volodymyra Boichuk and Klee Irwin

Assisi, 2019
Overcoming the Coulomb Barrier

Driving of adjacent potential wells occupied by hydrogen ions

- large amplitude anharmonic lattice oscillations (discrete breathers)
- fast phase transformation of quasicrystals (phasons)

nuclear active sites

Result of molecular dynamic modelling
Reversible phason flips from CUBO to ICO symmetry is possible for Pd or Ni nanoclusters

Pd-13 and Ni-13 clusters

Cuboctahedral

Icosahedral
Pd and Ni nanoclusters

Cuboctahedral clusters

Icosahedral clusters

Template synthesis
Pd and Ni nanoclusters: templates

Zeolite (alumosilicate) structure
three-dimensional framework
with two types of cages:
1.3 nm and 0.74 nm.
Uniform pore size distribution

Porous carbon
three-dimensional framework
Pore size depends on the
carbonization and activation conditions
Pore size is controllable
SEM and TEM images, XRD pattern and pore-size distribution of C42 carbon sample used as a template for Pd-particle growth

Poro\c{s} carbon

$S_{\text{BET}}=1100 \text{ m}^2/\text{g}$

C42

Pore volume, cc/g

Pore size, nm

micropores
Syntesis protocol:

Pd nanoparticles were obtained using saturation of activated at 250°C microporous carbon with tetrachloropalladous acid - acetone (1:2) solution and reduction procedures in H₂/Ar flow at 200°C for 4 hours. The Pd content (EDX data) was about 11 wt.%.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic %</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>90.9</td>
<td>80.0</td>
</tr>
<tr>
<td>O</td>
<td>6.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Al</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Si</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Cl</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Pd</td>
<td>1.5</td>
<td>11.3</td>
</tr>
</tbody>
</table>

SEM images and EDX data of Pd-doped carbon
Pd-clusters in porous carbon matrix

Synthesis protocol:
Pd nanoparticles were obtained using saturation of previously activated at 250°C microporous carbon with tetrachloropalladous acid - acetone (1:2) and reduction procedures in H₂/Ar flow at 200°C for 4 hours. The Pd content (XRF data) was about 9-11 wt.%.

Average size of Pd clusters (XRD data) was about 1.5-1.7 nm.

Fig. 1. XRD pattern and pore-size distribution of carbon matrix and Pd-doped carbon
Pd-clusters in porous carbon matrix

Fig. 1. TEM images of Pd-doped carbon
Fig. 1. Adsorption-desorption isotherm and Raman spectra of Pd-doped carbon
Synthesis protocol:
Activated NaY zeolite was mixed with an nickelocene Ni(C₅H₅)₂ and heated at 130°C for 10 h to enable Ni(C₅H₅)₂ sublimation and adsorption in the zeolite pores. The Ni(C₅H₅)₂ adsorbing zeolite was exposed to ultraviolet light at room temperature for 3-5 days to organic ligand decomposion. The material was reduced under Ar/H₂ flow at 300°C.

Syntesis protocol:
Three ion exchange procedure using Nickel Chloride solution, reduction procedures in H₂/Ar flow at 200°C for 4 hours

Final Ni content is about 18.5 mass %

XRD data
No traces of X-ray crystal nickel-containing phases were observed.

Syntesis protocol:
Three ion exchange procedure using \((\text{NH}_3)_4\text{Cl}_2\text{Pd}\) aqueous solution, reduction procedures in H₂/Ar flow at 200°C for 4 hours

Final Pd content is about 14.0-14.5 mass %

Average particles size of Pd is about 11-12 nm
PdNi-clusters in zeolite matrix

Synthesis protocol:
S7a (Pd-Ni) NaY – two ion exchanges with tetraamin palladium dichloride and one exchanges with nickel acetate
S7b (Ni-Pd) NaY – two ion exchanges with nickel acetate and one exchanges with tetraamin palladium dichloride

Graphs and data:

- **S7A (PdNi:NaY)**
 - Ni content: 4.9 mass %
 - Pd content: 15 mass %
 - After reduction

- **S7B (NiPd:NaY)**
 - Ni content: 15 mass %
 - Pd content: 7.5 mass %
 - After reduction

Observations:
- Only Pd (15-19 nm), nickel particles too small
- The phase of metallic Pd (16-20 nm) and nickel-palladium intermetalide (6-10 nm) were observed

Synthesis protocol details:
- **S7a (Pd-Ni) NaY**: Two ion exchanges with tetraamin palladium dichloride and one exchange with nickel acetate.
- **S7b (Ni-Pd) NaY**: Two ion exchanges with nickel acetate and one exchange with tetraamin palladium dichloride.
The NaY zeolite was used as a template for adsorption and decomposition of a sublimated organometallic compound (tetraamine palladium chloride and nickelocene). Reduction procedures in Ar/H2 flow were performed at 200, 300 and 350°C. No traces of Pd or Ni-containing phases were observed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pd, mass %</th>
<th>Ni, mass %</th>
<th>Cl, mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S53</td>
<td>1.0</td>
<td>13.6</td>
<td>5.0</td>
</tr>
<tr>
<td>S53-200</td>
<td>0.3</td>
<td>7.0</td>
<td>4.1</td>
</tr>
<tr>
<td>S53-300</td>
<td>0.2</td>
<td>8.0</td>
<td>1.5</td>
</tr>
<tr>
<td>S53-350</td>
<td>0.2</td>
<td>12.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Synthesis protocol:
The evolution of pore structure for PdNi-doped zeolite (S53 sample)
Synthesis protocol:
Two stages:
1. Activated carbon was used as a template for adsorption and decomposition of nickelocene with reduction procedures in Ar/H2 flow at 300°C.
2. Ni-doped carbon was saturated with tetraamine palladium chloride solution reduced in Ar/H2 flow at 200°C.
Pd-clusters in SBA-15 silica

Pore volume, cc/g

SBA-15

Pore size, nm

2 4 6

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

SBA-15+Pd

SBA-15+Pd+cytric acid

SBA-15

Intensity, arb. units

2θ, °

10 20 30 40 50 60

S40-1-200

Pore size, nm

Pore volume, cc/g

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

S40-2-200

Pd- 1.6 wt.%

12 nm

1.4 nm

12 nm

S40-1-200

Pd- 1.2 wt.%

10 nm

10 nm
Conclusions

• The methods of experimental obtaining of ultrasmall Pd and Ni, and also combined Pd-Ni clusters were successfully approbated.

• Porous carbon and zeolite matrixes were used for synthesis Pd and Ni nanoparticles with the average size about 1.5 nm.

• The analysis of hydrogen adsorption/desorption for synthesized Ni- Pd- doped carbons and zeolites was realized.

• The testing of obtained systems as a perspective LENR active materials with nuclear active sites due generation of discrete breathers or fast phase transformation of quasicrystals was started.
Thank you for attention

kotsuybynsky@gmail.com