Fang Fang, Sinziana Paduroiu, Dugan Hammock, Klee Irwin (2018)

On a two-dimensional quasicrystal, a Penrose tiling, we simulate for the first time a game of life dynamics governed by non-local rules. Quasicrystals have inherently non-local order since any local patch, the emperor, forces the existence of a large number of tiles at all distances, the empires. Considering the emperor and its local patch as a quasiparticle, in this case a glider, its empire represents its field and the interaction between quasiparticles can be modeled as the interaction between their empires. Following a set of rules, we model the walk of life in different setups and we present examples of self-interaction and two-particle interactions in several scenarios. This dynamic is influenced by both higher dimensional representations and local choice of hinge variables. We discuss our results in the broader context of particle physics and quantum field theory, as a first step in building a geometrical model that bridges together higher dimensional representations, quasicrystals and fundamental particles interactions.